(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(s(x)) → f(x)
f(0) → s(0)
f(s(x)) → s(s(g(x)))
g(0) → 0
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(s(s(x2_1))) →+ s(s(g(x2_1)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x2_1 / s(s(x2_1))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(s(x)) → f(x)
f(0') → s(0')
f(s(x)) → s(s(g(x)))
g(0') → 0'
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
g(s(x)) → f(x)
f(0') → s(0')
f(s(x)) → s(s(g(x)))
g(0') → 0'
Types:
g :: s:0' → s:0'
s :: s:0' → s:0'
f :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g,
fThey will be analysed ascendingly in the following order:
g = f
(8) Obligation:
TRS:
Rules:
g(
s(
x)) →
f(
x)
f(
0') →
s(
0')
f(
s(
x)) →
s(
s(
g(
x)))
g(
0') →
0'Types:
g :: s:0' → s:0'
s :: s:0' → s:0'
f :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
f, g
They will be analysed ascendingly in the following order:
g = f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_s:0'2_0(
*(
2,
n4_0))) →
gen_s:0'2_0(
+(
1,
*(
2,
n4_0))), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_s:0'2_0(*(2, 0))) →RΩ(1)
s(0')
Induction Step:
f(gen_s:0'2_0(*(2, +(n4_0, 1)))) →RΩ(1)
s(s(g(gen_s:0'2_0(+(1, *(2, n4_0)))))) →RΩ(1)
s(s(f(gen_s:0'2_0(*(2, n4_0))))) →IH
s(s(gen_s:0'2_0(+(1, *(2, c5_0)))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
g(
s(
x)) →
f(
x)
f(
0') →
s(
0')
f(
s(
x)) →
s(
s(
g(
x)))
g(
0') →
0'Types:
g :: s:0' → s:0'
s :: s:0' → s:0'
f :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'2_0(*(2, n4_0))) → gen_s:0'2_0(+(1, *(2, n4_0))), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
g
They will be analysed ascendingly in the following order:
g = f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(13) Obligation:
TRS:
Rules:
g(
s(
x)) →
f(
x)
f(
0') →
s(
0')
f(
s(
x)) →
s(
s(
g(
x)))
g(
0') →
0'Types:
g :: s:0' → s:0'
s :: s:0' → s:0'
f :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'2_0(*(2, n4_0))) → gen_s:0'2_0(+(1, *(2, n4_0))), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0'2_0(*(2, n4_0))) → gen_s:0'2_0(+(1, *(2, n4_0))), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
g(
s(
x)) →
f(
x)
f(
0') →
s(
0')
f(
s(
x)) →
s(
s(
g(
x)))
g(
0') →
0'Types:
g :: s:0' → s:0'
s :: s:0' → s:0'
f :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'2_0(*(2, n4_0))) → gen_s:0'2_0(+(1, *(2, n4_0))), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0'2_0(*(2, n4_0))) → gen_s:0'2_0(+(1, *(2, n4_0))), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)